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Introduction

Computational models for understanding human be-
havior are an important component for enabling robots
to appropriately interact with people in shared envi-
ronments. Recent techniques assume that behavior is
goal-directed and infer the goals and future behaviors
of people (Baker et al., 2006) to plan complementary
robotic control (Ziebart et al., 2009; Kuderer et al.,
2012) or learn imitative control policies (Verma & Rao,
2006; Michini et al., 2013).

This goal-based approach to learning predictive mod-
els of behavior works well when the boundaries be-
tween behaviors with di↵erent goals can be readily dis-
cerned. For example, with pedestrian motion, a per-
son may spend a noticeable amount of time at an in-
tended goal location before proceeding towards a next
intended goal. However, some sequences of observed
behavior may not have such clear demarcations. For
example, a pedestrian may walk to a garbage can to
discard an object and, without stopping, then walk to
an intended location. Given only position information,
the change in goals that occurs at that point cannot be
explicitly recognized. Learning a goal-directed model
of behavior without having appropriately recognizing
these subgoals will lead to poorly trained models and
less accurate predictions.

Previous techniques identify subgoals (sequences of
goals) based on the state visitation frequencies (Mc-
Govern & Barto, 2001) or graph properties of the (dis-
crete) decision process (Menache et al., 2002; Şimşek
et al., 2005). These techniques require many observed
trajectories and/or are not applicable in continuous
state spaces. We discuss the relationships of our ap-
proach with Bayesian change-point detection and tra-
jectory segmentation in detail later in the paper.

In this work, we investigate the subgoal inference prob-
lem using Bayesian probabilistic methods to infer sub-
goals from trajectory likelihood functions. We present
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Figure 1. A trajectory of states (connected by directed
edges) and posterior goal probabilities (circle areas in pro-
portion to posterior probability) with actual goals in red.

an e�cient quadratic time algorithm for inferring the
posterior of a sequence of goals and the marginals of
individual subgoals and describe its applicability for
learning hierarchical models of behavior. We evaluate
the accuracy of our inference approach in recovering
latent subgoals from a synthetic dataset, and also ap-
ply it to a real dataset of pedestrian trajectories.

The subgoal inference task

We focus on the problem of identifying the sub-
goals that motivate observed sequences of behavior, as
shown in Figure 1. Though we focus on location-based
behavior in this paper, the technique is general for any
sequences of behavior that can be represented as a de-
cision process. We denote the complete trajectory of
states as x

1:T

(x
t

2 X ). We assume that some subset
of these states are (sub)goal locations which the pedes-
trian intended to reach. The vector g

1:T

(g
t

2 {0, 1})
indicates whether each state is a subgoal location or
not and the position of active subgoals. We denote
using g

�(k)

the kth active goal. More formally, the
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Figure 2. Bayesian network representing our likelihood
function.

subgoal inference task is any of the following:

• To (probabilistically) determine which of the
states are subgoals via the posterior,

P (g
1:T

|x
1:T

) =
P (x

1:T

|g
1:T

)P (g
1:T

)

P (x
1:T

)
, (1)

which factors according to Bayes’ theorem as
shown;

• To obtain the marginal probability of a sub-
goal, P (g

t

= 1|x
1:T

), or subsequent subgoals,
P (g

�(k)

, g

�(k+1)

|x
1:T

); or

• To find the most probable subgoal sequence (max-
imum a posteriori estimate):

g

⇤
1:T

= argmax
g1:T

P (g
1:T

|x
1:T

). (2)

We assume that the likelihood function for a trajectory
between two consecutive goals, denoted

P (x
�(k):�(k+1)

|g
�(k)

, g

�(k+1)

), (3)

is known. We also assume that a prior probability
distribution over goals factors according to a known
Markov chain distribution,

P (g
1:T

) = P (g
�(1)

)
K�1Y

k=1
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), (4)

which is decomposed according to Figure 2. With
slight abuse of notation, we let P

�

(g
j

|g
i

) represent the
conditional probability that g

j

is the next active goal
following g

i

from Eq. (4) and let P

�

(x
i:j

|g
i

, g

j

) rep-
resent the trajectory probability between consecutive
subgoals g

i

and g

j

from Eq. (3). The first and the last
states are assumed to be goals: g

1

= g

T

= 1, �(1) = 1,
�(K) = T .

An e�cient subgoal inference algorithm

Previous work on goal-based model learning for
robotics has employed Markov chain Monte Carlo
(MCMC) to perform approximate subgoal inference
for robotics application (Michini et al., 2013). We
present an e�cient polynomial time algorithm for ex-
act subgoal inference within our model setting in this
section.

Theorem 1. Given the likelihood functions of sub-

trajectories between pairs of goals, the goal probability

marginals can be e�ciently computed in O(T 2) time

using dynamic programming:

P (g
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, (5)

where the ↵(t) and �(t) terms are recursively obtained

as follows:
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The method is general for any goal-conditioned likeli-
hood function and goal probability distribution corre-
sponding to the independence properties of Figure 2.
Though, in general, O(T 3) may be required to gener-
ate these likelihood evaluations, predictive inverse op-
timal control (Ziebart et al., 2009) techniques may pro-
vide likelihood evaluations more e�ciently (Vernaza &
Bagnell, 2012).

Learning hierarchical models of behavior

Subgoal inference is an important sub-problem of
learning models of goal-directed behavior when the
goals are not explicitly labeled (or directly recogniz-
able from other context). In this section, we integrate
our subgoal inference routine into a learning frame-
work for hierarchical models of behavior. We assume
that trajectory datasets do not have annotated subgoal
locations or, at best, partial annotation. Our approach
uses the expectation-maximization (EM) algorithm to
infer estimates of the latent subgoal probabilities and
then updates the prior subgoal distribution and the
goal-directed trajectory likelihood function.

Let, Q(i, j) be the expectation of the i-th and j-th
trajectory points being consecutive subgoals. We can
use the following equations to estimate the probability
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M-step:

⇥⇤
x

= argmax
⇥

x

X

i,j

Q(i, j) logP (x
i:j

|g
i

, g

j

;⇥
x

). (8)

For estimating the prior subgoal distribution, the M-
step is:

⇥⇤
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= argmax
⇥

g

X
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Q(i, j) logP (g
j

|g
i

;⇥
g

). (9)

Convergence to a local optima is guaranteed by se-
quentially applying the E-step and M-step (Dempster
et al., 1977).

Hierarchical models can be learned using the EM al-
gorithm by treating the goal sequences learned in a
single-layer model (as described previously) as position
sequences for a higher-level goal sequence distribution.
Thus, instead of learning a prior distribution over sub-
goals, P (g

1:T

), the distribution over subgoals is con-
ditioned on a higher-level sequence of hyper-subgoals
P (g

1:T

|g0
1:T

) with a prior distribution P (g0
1:T

) (or con-
ditioning on an even higher-level set of subgoals, g00

1:T

).

Experiments

We evaluate our subgoal inference approach in two
settings: using a synthetic dataset for which the true
subgoals are known; and a real pedestrian trajectory
dataset with unknown subgoals.

Synthetic dataset

For our synthetic dataset, we created goals and tra-
jectories in two-dimensional Euclidean space using a
simple model. First, we generated six subgoal points
according to Gaussian distributions (centered at the
previous subgoal point with variance of 10):

x

�(k+1)

|x
�(k)

⇠ Normal

✓
x

�(k)

,

✓
10 0
0 10

◆◆
(10)

Next, we generate trajectories between each pair of
consecutive subgoals. The number of trajectory points
between two consecutive subgoals, n

k

, is based on the
Euclidean distance between the subgoals,

n

k

= d3 ||x
�(k+1)

� x

�(k)

||e (11)

with approximately three trajectory points for every
unit of distance between subgoal points. The trajec-
tory points themselves are each Gaussian distributed

around the line connecting consecutive subgoals:
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(12)

We vary the covariance value �

x

in our experiments.

Pedestrian trajectory dataset

We employ a previously collected and studied dataset
of pedestrian trajectories of tracked movements
through a laboratory environment (Ratli↵ et al., 2009;
Ziebart et al., 2009). In those previous investigations
of this dataset, anomalous trajectories were discarded
and only a subset of 166 trajectories were used to train
and evaluate the methods. We focus our attention
on rationalizing those anomalous trajectories as being
motivated by sequences of subgoals.

Prior probabilities and likelihoods

For our synthetic dataset, we compute the trajectory
likelihood using the generative distribution described
in Eq.(12). As the relative positions of consecutive
goals is distributed according to a two-dimensional,
zero-mean Gaussian, the distribution over distances
between goals is a (transformed) Chi-distribution of
degree two. We construct our prior distribution over
consecutive goals by evaluating this Chi-distribution
at the spacing points of the trajectory points and nor-
malizing.

For our real dataset, we employ the prior work’s
smoothed prior goal distribution for our subgoal prior
(Ziebart et al., 2009) and maximum entropy inverse re-
inforcement (Ziebart et al., 2008; 2009) learning distri-
bution over trajectories between subsequent subgoals:

P (x
�(k):�(k+1)

|g
�(k)

, g
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e

�
P
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, (13)

where the set of all paths from g

�(k)

to g
�(k+1)

is repre-
sented as ⌅

g

�

(k),g

�

(k+1)

. This model corresponds to an
undirected conditional probabilistic graphical model
as shown in Figure 3.

Synthetic dataset results

We generated 100 samples for each of the variance val-
ues (deviation from the connecting line) of {0.01, 0.05,
0.1, 0.2}. For precision and recall evaluations, we as-
sume a point to be a goal if its posterior probability
is greater than 0.5. The result (Figure 4) shows that
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Figure 5. Synthetic trajectories with inferred and actual subgoals. The area of the circles are proportional to the posterior
probabilities. Red circles are the actual goals, green circles are all other points in the trajectory. (a) is with trajectory
generating variance 0.01, (b) is with variance 0.05, (c) with 0.1 and (d) is with 0.2 variance
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Figure 3. Random field probabilistic graphical model used
for the likelihood function of the pedestrian trajectory
dataset.
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Figure 4. Correctness measurement with respect to di↵er-
ent distribution variance of trajectory points.
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Figure 6. A pedestrian trajectory from the entrance to a
table/garbage can location to the left portion of the lab-
oratory. High-probability inferred subgoals (greater than
10% posterior probability) are displayed as red circles with
areas in proportion to posterior probability.

the prediction loses its accuracy when the trajectory
points are more deviated from the straight line.

Due to the noise in the data, the inference routine
is sometimes misled (Figure 5(d)), but the likelihood
function also prevents it from choosing all extreme
points as subgoals, which would lead to a larger num-
ber of errors.

Pedestrian trajectory dataset results

The results of our subgoal inference procedure on two
pedestrian trajectories are shown in Figure 6 and Fig-
ure 7. In the first figure, a garbage can is located
within arm’s reach of the right-most inferred subgoal
location and may explain the trajectory. Additional
subgoals inferred near the beginning and end of the
trajectory are believed to be due to tracking software
errors. An inverse reinforcement learning model that
views this trajectory as being directed towards a sin-
gle goal (and not at least two subgoals) will have great
di�culty rationalizing the trajectory and estimating
an appropriate cost function. In the second figure,
the pedestrian chooses a seemingly sub-optimal trajec-
tory around the table location (in comparison to many
other trajectories in the dataset). The subgoal infer-
ence method places moderate posterior probability of
the trajectory actually being directed to intermediate
subgoals along the way.

Related Work

Subgoal recognition has recently been investigated for
robotics applications. An imitation learning tech-

Figure 7. A pedestrian trajectory from the upper-right
portion of the laboratory and around the table area. High-
probability inferred subgoals (greater than 10% posterior
probability) are displayed as red circles with areas in pro-
portion to posterior probability.

nique for unmanned aerial vehicles (UAVs) learns a
sequence of significant subgoals that adequately define
demonstrated behavior (Michini et al., 2013) within a
Bayesian non-parametric framework. A sampling al-
gorithm is employed to approximately calculate the
marginal posterior probability of each particular sub-
goal. The resulting learned subgoals are then em-
ployed within a UAV controller to autonomously imi-
tate previously demonstrated behavior. In contrast,
our algorithms provide exact inference in quadratic
time.

Bayesian change-point detection (Fearnhead, 2006) is
a related technique for inferring that di↵erent subse-
quences of time series data are generated from dif-
ferent probability distributions. At timestep t, ei-
ther the datapoint x

t

is generated from the same dis-
tribution that generated data x

⌧

, . . . , x

t�1

, (for each
⌧ 2 {1, . . . , t � 1}) or it is generated from a new
parametric distribution with unknown parameters as-
sumed to be drawn from a known prior distribution.
Using Bayes’ theorem, a posterior distribution over
possible durations of the current subsequence of data
and model parameters from each subsequence is main-
tained in O(t) time per timestep or O(T 2) time for
the entire sequence. This change-point detection ap-
proach has been employed for skill tree learning from
demonstration (Konidaris et al., 2012).

Our approach, in contrast, assumes a known likelihood
function (and provided evaluations of that likelihood
function between pairs of potential subgoals) that is
conditioned on the next subgoal. Thus, at time-step
t, for each ⌧ < t, there are T � t + 1 possible para-
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metric models to consider (one for each next subgoal
position, t+1, t+2, . . . , T ) and update if following the
Bayesian change-point perspective. Thus, a straight-
forward application of Bayesian change-point detec-
tion would entail O(T 3) total time.

Dynamic programming algorithms for trajectory seg-
mentation (Mann et al., 2002) are more similar to our
approach. They operate by assuming that each sub-
trajectory segment is generated from e.g., a polyno-
mial curve with Gaussian error. Given the best fit
polynomial for each sub-trajectory segment (O(T 2) to-
tal sub-trajectories), the optimal trajectory segmenta-
tion is obtained in O(T 2) time complexity. Rather
than obtaining an independent model for each sub-
trajectory segment, our approach attempts to learn
sub-trajectory models with shared parameters. Thus,
we provide a posterior distribution given the sub-
trajectory segment likelihoods for incrementally im-
proving the likelihood function using the expectation-
maximization algorithm.

Conclusion

In this paper, we presented a method for inferring and
learning when faced with sequences of behavior that
are motivated by latent subgoals. Our approach uses
a quadratic-time dynamic programming algorithm for
inference and the expectation-maximizaton algorithm
for learning. We evaluated our approach on a syn-
thetic dataset to show the relationship between noise
in the trajectory samples and resulting precision/recall
of subgoals. We also applied the approach to real
pedestrian trajectories and showed examples where we
believe it correctly identifies subgoals that would help
improve learned predictie inverse optimal models.
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Appendix

Proof of Theorem 1. We begin by computing the numerator of Eq. (1), which is the joint probability of goal g
t

being active and the trajectory.
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Also, since the two end points are always goals, ↵(1) = �(T ) = 1. This property and Eq. (16) and Eq. (18)
together defines the Eq. (6).

By definition of ↵(t) and �(t), ↵(T ) and �(1) are the probability functions that are summed over all possible
goals in the trajectory. Therefore,

↵(T ) = �(1) =
X

g

P (g
1:T

, x

1:T

) (19)

So we have

P (g
t

= 1|x
1:T

) =

P
g�t

P (g
1:T

, x

1:T

)
P

g

P (g
1:T

, x

1:T

)
=

↵(t)�(t)

↵(T )
(20)

To compute all ↵(t) and �(t), it requires O(T ) time for each one (using Eq. (16) and Eq. (18)) and there are T

number of each of the terms, thus the time complexity is O(T 2).


